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THERMAL STATE OF A POROUS PLATE UNDER COOLANT 

FILTRATION CONDITIONS 

V. V. Faleev, V. V. Shitov, 
and A. Ya. Terleev 

UDC 536.244 

The steady-state temperature field is considered in a finite porous plate 
during filtration of a coolant. 

One of the important problems in the design of porous cooling systems is study of the 
temperature fields within porous bodies in the presence of filtration processes. In par- 
ticular, [i, 2] were dedicated to this problem. Because of their complexity, problems of 
this type are solved in two stages: initially the dynamic problem is solved, i.e., the 
pressure (velocity) field in the porous body is found, after which the temperature field 
is constructed from the solution so obtained. Use of this approach is based on the assump- 
tion of the dominant effect of the velocity field on the temperature field in the porous 
body with only a weak effect in the opposite direction. 

The goal of the present study is to obtain an analytical solution for the temperature 
field in a two-dimensional porous body when an incompressible liquid is used as the coolant. 

We will consider the thermal state of a finite porous plate ABCDEK (Fig. la [3]), to 
which coolant is supplied through the face AC under a pressure PI. A pressure P2 exists on 
the surfaces AK and CD. In addition, we will assume the face KD to be impermeable and 
thermally nonconductive. Moreover, we assume that the temperature at the coolant input to 
the plate is equal to T l, with temperature at the exit T 2, where T 2 is a known function of 
the coordinates. 

The flow within the porous medium obeys the law 

g r a d P  = f(v) v, (I) 
~(T)  v 

with consideration of which, heat and mass transport with a powerlike resistance law can be 
described by the equations 
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Fig. i. Formulation of problem. 

s - -  pcvv grad T = 0, (2) 

OW i~--n--7-[ OP 0W 1/~ + 1 exp (-- 2av) OP - -  ~ exp (--2aT) - -  (3) 

Solution of the dynamic problem can be reduced to solution of the Helmholtz equation 
for the exponential pressure function in Chaplygin coordinates ~, $. Subsequent application 
of a Fourier integral transform and the Wiener-Hopf method produces the following expres- 
sions for the unknown function [3]: 

at �9 > 0 

where 

Q(T, [3)= 2 - exp(--e,)  8cD(~) ~-'~, kexp(---rh*) sin4k}, ( a )  
~I ~i ~ ~ _ _  k=l r~ (r~ 8) q) (r~) 

atz<0 2 

t exp(- -sT)+ 800(8) 2 CD(s~)exp(skv) 2(2k--1)[~, (5) 
0 (~, ~) = --2- ~2 s~ (s,~ - ~) cos 

k =  l 

. . . .  , = - - "  r ~ =  U ~ + ~ ;  
2 ] / / n +  1 h=l 2k--1 z+ri~ 

sk= l/4(2k--1) 2 + 8  ~ . 

Using Eqs. (4), (5) together with system (3) and the replacement 

P = Q exp (e'Q ( 6 ) 

we can find the pressure distribution in the filtration region 

1 8CD(e) Z cD(s~)exp[(s~+e)~l cos2(2k-- l )~ .  (7) 
P ('~, 6) = T + a ~ s~ (s,~ - -  s) 

In particular, on BE(ED) Eq. (7) takes on the form 

P ('c, [3) --- 1__ • 8(1:) (8) Z �9 (sh) exp [(sk -6 e) xl (8) 
2 ~2 sk (sk - -  ~) 

h = I  

The p r e s s u r e  found in t h i s  manner appears  as an independent  v a r i a b l e  in the  d i f f e r e n t i a l  
equa t ion  for  the  t empera ture  of the  porous body 

dp0 (6 0--~p) + ' -~0 ( l OT c?, + c,~,, OTop O. (9) 

where 6 = v"~/~. 

In the case of variable coolant viscosity and nonlinear filtration, integration of Eq. 
(9) is difficult. However, if we assume f(v)/v = const, and take the coolant viscosity 
constant and equal to its mean value over the given temperature interval, then in the co- 
ordinates 

P = P  and W cP~2 
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Fig. 2. Functions at n = 0.4: 
i) e = f(x, y); 2) T = f(x, y) 
(along lines BE and ED). 

Eq. (9) takes on the form 

where < : aCp/gX = const. 

T = Uexp (- 

we transform Eq. (i0) to the Helmholtz equation 

O2U O~U 
ap  2 a ~  2 

O~T 02T OT = O, 
OP ---T + ~ + • OP 

With the replacement 

2 

~2 
U = O .  

4 

(10) 

(11) 

(12) 

(13) 

(14) 

If the impermeable boundary DK can be considered thermally nonconductive, then in the 
coordinates P, ~ the filtration region forms an infinite band of width 0 ~ P ~ Pz- The 
section along the P axis may be neglected, since the thermal load is symmetric. Moreover, 
since the impermeable boundary is nonconductive, along that boundary 8T/8~ = 0 (Fig. ib). 

Let the temperature on the boundaries AK and DC be described by the equation 

T ~ = T ( ~ ,  0). 

We write the function U(P, ~) as a generalized Fourier integral: 

+~+ib 

1 F+ (P, X) exp (iX~) dl  + T F_ (P, X) exp (iX~) dX, u(P, ~)= 2~ 

where . . . .  +~b 

.3 
b>-~-, F+(P, Z)= . U(P, ~)exp(--iZ~)d~; 

0 

O -- 

F_ (P, ~) = ~ U ( P ,  ~) exp(--i~) d~. 
- - r  

Here the function F+(P, l) is regular in some lower half plane of the complex variable l, 
while F_(P, X) is regular in the upper half plane. 

We then obtain the differential equation 

d*F 
- -  ~12 F = O, 

d p  2 _ 

where q2 : A2 + <2/4 . The boundary conditions are: 

P=O, F=F(O, ~), P=PI, F-O. 

The solution of this equation has the form 

F(P, %)=F(0, ~) shN(Pz--P) 
sh NPz 

The function U(P, ~) is defined by the expressions: 

(15) 

(16) 

(17) 

ate> 0 
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1 ~ F(0, ~) sh~(Pl - -P)  exp(i)~F)d)~, (18) 
U(P, ~F)- 2~ o sh~lP 1 

- - o o  

ate<0 
+~+ib 

U(P, ~F)= 12~ ~ F(0, ~) Shsh ~(PI~P1- P) (19) 
--o~+ib 

In Eqs. (18), (19) for �9 > 0 integration is performed over the upper X half plane, and 
over the lower for ~ < 0. 

As an example, we will consider the steady-state temperature field in a porous plate 
when the temperature on the coolant exit surface is described by the expression 

T = exp (--N IWI), (20) 

where N = const .  In t h i s  case the simple Fourier  t ransform 

2N f(0, ~)= F+(0, i ) +  F_(0, ~) (21) 
)~2 + N 2 

can be used. Then the reverse transform gives 

1 j '  2N sh~(P~--P) exp(i~F) d~. (22) 
U ( P ,  ~F)= 2--~ ~'~N 2 sh~P1 

The in tegrand of Eq. (22) has simple poles a t  the poin ts  

L = -4- iN,  )~ = -4- iSm, 

where 

F m2~2 ~2 
Sm= - ~ - - +  4 

Then using res idue  theory and summing over m, we f ind  

[ -  ] sin ] / N  2 -  ~ (P1--P) 
U (P, ~g) = V 4 exp (-- N [~g[) + m exp ( - -  Sm ]W']) sin mz P (23)  

>7 0-7- 

As is evident from Eq. (23), the temperature distribution is symmetric about the axis ~ = 0. 

Figure 2 shows the pressure and temperature profiles along the plate axis and impermeable 
boundary (flow in ~ = 0) at n = 0.4. It follows from the figure that the temperature dis- 
tribution is nonlinear in character, with the steepness of the rise in the temperature curve 
decreasing continually along the line BE, but nevertheless increasing significantly with ap- 
proach to the coolant extraction surface, i.e., to the zone of most intense heat exchange 
between the heated porous skeleton and the coolant filtering through the pores. 

NOTATION 

T, dimensionless temperature; Cp, specific heat of incompressible liquid; p, density; ~, 
effective thermal conductivity coefficient of porous body-coolant system; n + i, degree of 
filtration (at n = 0 filtration is linear); P = P*/v0d , dimensionless flow function; P = P*/ 
P0, dimensionless pressure; v0, P0, characteristic filtration velocity and pressure; f(v), 
function defining the filtration law in each concrete case; X = (v0n+zd)/P0 ~, dimensionless 
filtration parameter; d, characteristic dimension; ~(T), dynamic viscosity coefficient. 

LITERATURE CITED 

1. B. M. Smol'skii, P. A. Novikov, and V. A. Eremenko, Phase and Chemical Conversions in 
Interaction of Bodies with a Gas Flow [in Russian], Minsk (1975), pp. 162-167. 

2. V. V. Faleev, Inzh.-Fiz. Zh.~. 45, No. 3, 439-443 (1983). 
3. V. V. Shitov, V. V. Faleev, and V. P. Gurenko, All-Union Inter-VUZ Conference on Gas 

Turbine and Combined Apparatus, Summaries of Reports [in Russian], Moscow (1983), pp. 
126-127. 

1291 


